Jan. 16th | None Scheduled. |
Jan. 25th | Rebecca A. Bernstein University of Michigan, Ann Arbor Detailed Chemical Abundances of Extragalactic Globular Clusters (On the Formation of Galaxies and Spectrographs) My collaborators and I are developing a method for measuring the detailed abundances of extragalactic globular clusters from high resolution spectroscopy of their integrated light. To do so, we are using a "training set" of clusters in the Milky Way and LMC. In these spatially resolved GCs, we can compare our integrated light analysis with standard analysis of individual stars to test our results. Our work to date shows that we can measure abundances of a wide range of key elements with similar accuracy to that obtained from individual stars. Our goal is to apply these techniques to GCs in galaxies within 4 Mpcs to constrain their formation histories as the Milky Way's formation history has been studied. In this talk, I will also describe the "formation" of the MIKE spectrograph, which I designed and built for the Magellan telescopes and which we are using in this research. |
Jan. 30th | Kepler Oliveira Universidade Federal do Rio Grande do Sul, Brazil White Dwarf Mass Distribution In all papers to date the mass distribution for hydrogen (DAs) and helium (DBs) atmosphere white dwarf stars has been very similar, centered around 0.6 Msun. But the samples have been limited because of the faintness of the stars. The largest published sample is 318 DAs and 48 DBs. With the Sloan Digital Sky Survey Data Release 4, we studied a sample of 7167 DAs and 507 DBs and obtain distinct mean masses for the two populations, <M(DA)>=0.593\pm 0.016M(Sun) and <M(DB)>=0.683\pm 0.008M(Sun). We detect around 20% stars with M>0.8M(Sun) and the highest mass white dwarf stars known, up to 1.33 M(Sun). |
Feb. 6th | John Kormendy University of Texas at Austin Structure and Formation of Elliptical Galaxies New surface photometry of all known elliptical galaxies in the Virgo cluster is combined with published photometry to derive composite brightness profiles over large radius ranges. They give enough radial leverage to show that Sersic functions describe nearly all ellipticals remarkably well. Therefore we can confidently identify central departures from these profiles that are diagnostic of galaxy formation: Two kinds of departures are seen. Bright ellipticals (M_B < -20) have cuspy cores -- "missing light" at small radii. Cores are well known and are naturally scoured by binary black holes produced in dissipationless ("dry") galaxy mergers. Faint ellipticals do not have cores; instead, they have extra light at the center above the inward extrapolation of the outer Sersic profile. The properties of the extra light resemble those of compact central components predicted in numerical simulations of mergers that contain gas. We suggest that faint ellipticals were produced by dissipational ("wet") mergers including central starbursts. Wet and dry mergers, respectively, explain how the observed dichotomy between faint-disky-coreless ellipticals and bright-boxy-core ellipticals was formed. Why wet and dry mergers formed the dichotomy became clearer at the 2006 Potsdam Thinkshop on Black Holes and Galaxy Formation. This was a watershed in establishing the importance of energy feedback from active galactic nuclei (AGNs) into the galaxy formation process. The essential point is that hot, x-ray-emitting gas is required to store AGN energy and make it available to solve a variety of problems in galaxy formation. Remarkably, faint-disky-coreless ellipticals do not contain hot gas halos, while bright-boxy-core ellipticals do contain such halos. We suggest that AGN feedback in giant but not faint ellipticals explains why the E-E dichotomy arose. Finally, we verify that there is a dichotomy between elliptical and spheroidal galaxies. Their properties are consistent with our understanding of their different formation processes: mergers for ellipticals, and conversion of late-type galaxies into spheroidals by environmental effects and by energy feedback from supernovae. |
Feb. 13th | Kurtis Williams University of Texas at Austin Focusing Gravitational Lenses by Focusing on their Environments Strong gravitational lenses, where a single galaxy lenses a background source, have long been touted as an independent and "simple" means of measuring cosmological quantities, such as the value of the Hubble Parameter and the density of dark energy in the Universe. Yet all too often, these supposedly straightforward measurements have yielded values that contrast markedly with generally accepted values. If lenses tend to lie in complex environments, such as groups of galaxies, these cosmological measurements (which generally ignore the environments) will be biased. My collaborators and I have undertaken a large photometric and spectroscopic survey of the environments at and along the line-of-sight toward 69 strong gravitational lenses in order to determine what fraction of lenses lie in complex environments. In addition, our data are able to provide a large sample of galaxy groups out to z~1, useful for studying group evolution over a long time baseline. Further, we are finding evidence that we can use the lenses themselves as probes of the dynamical state and shape of group dark matter halos. |
Feb. 20th | Tiziana Di Matteo Carnegie Mellon University The Formation and Evolution of a Cosmological Population of Black Holes and Galaxies There is a growing observational evidence for a close connection between the formation and evolution of galaxies and of their central supermassive black holes. Motivated by this connection, we investigate the coupled formation and evolution of black holes and galaxies using state-of-the-art cosmological hydrodynamic simulations (a data set which includes the largest simulation yet run) of structure formation in the Lambda-Cold Dark Matter model. Along with the gravitational evolution of dark matter, gas dynamics, cooling and star formation, the simulation follows black hole growth and associated feedback self-consistently. I will discuss black hole growth in the centers of galaxies and their impact on galaxy formation. I will show how we can use our model to investigate the global history of black hole mass assembly in galaxies from the high redshift Universe to today and the formation and fate of the first quasars and the properties of their hosts. |
Feb. 27th | Michelle Creech-Eakman New Mexico Institute of Mining and Technology Magdalena Ridge Observatory Interferometer - A Fully Optimized Aperture Synthesis Array I will present a brief overview of the Magdalena Ridge Observatory Interferometer (MROI), being built at an altitude of 10,500 feet just outside of Socorro, NM. The planned architecture of the system will include 10 1.4-m class alt-alt telescopes, the most modern detectors operating over the 0.6 - 2.4 micron range, with relocatable telescopes capable of resolving sources with sizes in the range of 30 - 0.3 milliarcseconds. I will present a brief overview of the technique of optical interferometry and then demonstrate some of the science which has been done already with optical interferometers. I will introduce our key science mission for the MROI and demonstrate how the design for this array will provide unprecedented, model independent images for a wide variety of stellar and some extragalactic sources. The MROI is being built in collaboration by two principal institutions: New Mexico Tech and the University of Cambridge. We are following an aggressive schedule and anticipate first light on the first baseline in 2009. |
Mar. 6th | James E. Lawler University of Wisconsin, Madison Laboratory Astrophysics with Old and New Fourier Transform Spectrometers The first part of this talk will be a description of our laser and Fourier transform spectrometer (FTS) experiments used to measure accurate, absolute atomic transition probabilities. These laboratory results are being systematically applied by UT-Austin astronomers (Sneden et al.) in studies of metal-poor Galactic halo stars. The increasingly well-defined r-process abundance patterns of some Halo stars provides a strong constraint on nucleosynthesis models. In the second part of this talk I will describe our Mark 1 Spatial Heterodyne Spectrometer (SHS). This instrument is a new type of broad-band, high resolution FTS. The Mark 1 SHS will have substantial laboratory applications, and may influence the design of spectrometers for next generation orbiting and large (~30 m) ground-based telescopes. |
Mar. 20th | Jonathan C. Tan University of Florida Star Formation Near and Far Star formation is a fundamental process that, as the final stage of cosmic structure formation, dictates how galaxies form and evolve. At the same time it sets the environment for the birth of planetary systems. We must understand star formation to know our own origins. Unfortunately we are a long way from a complete theory of star formation. In this talk I describe a number of projects through which we attempt to understand how stars from in a range of galactic environments. We start with massive star and star cluster formation in our local Galactic neighborhood, exemplified by the Orion Nebula Cluster. We look for differences between star cluster formation in dwarf irregular and spiral galaxies. Continuing to the environs of supermassive black holes, we find star formation is a natural and important part of their accretion process. Finally we apply the knowledge we have gained about local star formation to make a theoretical prediction for how it occurs in the high redshift, metal-free universe. |
Apr. 3rd | John Peoples Fermi National Accelerator Laboratory (Fermilab) The Dark Energy Survey The need to understand the accelerating expansion of the universe has become a critical problem for cosmology. It certainly requires something new: dark energy. In order to begin to pin down its nature, more precise measurements of its properties must be made; the key property of dark energy that determines the expansion history of the Universe is its equation of state parameter, w. The Dark Energy Survey Collaboration plans to measure w with an optical-near infrared survey of 5000 sq. deg of the South Galactic Cap to ~24th magnitude in the SDSS griz filters. We propose to build a state-of-the-art, wide-field CCD imager, DECam, and mount it on the Blanco 4-m telescope at Cerro Tololo Inter-American Observatory. We also plan to build and deploy a powerful data management system to process and distribute the data to the Collaboration and the public. The project will be carried out with support of Fermilab, NCSA, NOAO and partner universities from the U.K, U.S., Spain and Brazil with funding from DOE, FINEP, MEC, PPARC, NSF, and the participating institutions. |
Apr. 10th | Steven Kawaler Iowa State University Numerology and Asteroseismology The physics of stellar pulsation provides a limited set of rules for oscillation frequencies that a star can show. Frequently these rules produce simple numerical relationships between the observed frequencies that we can exploit as a "short cut" for determining global properties and some structural details. But sometimes, pulsating stars show stark systematics that theory does not readily anticipate. What (if anything) can we learn from these systematics? How devious can Nature be in producting spurious apparent systematics that send us down interesting, but ultimately fruitless, paths of analysis? To approach these questions, I will show examples of predicted and verified asteroseismic tools, unanticipated but still valuable relationships, and a blind alley or two - all taken from pulsating stars in their end stages of life. |
Apr. 17th | David S. De Young National Optical Astronomy Observatory (NOAO) AGN Outflows and Galaxy Cluster Evolution Energetic outflows from active galactic nuclei have been a topic of astrophysical interest for several decades, and many basic features of these outflows are still poorly understood. In particular, the highly collimated bipolar jets emanating from the cores of AGN lack a clear definition of their most basic parameters. More recently such outflows have been suggested as a mechanism for solving the "overcooling" problems encountered by current CDM cosmological models. In addition, AGN outflows have been hypothesized as sources of energy for reheating the intra-cluster medium in rich clusters and thus as a solution for the "cooling flow" problem in the ICM. This talk addresses these three issues via an examination of the processes that can couple the energy of bipolar AGN outflows to the ambient medium, with emphasis on the effects of AGN in galaxy clusters. These outflows can provide new constraints on the "central engine" driving the outflow, and in addition the evolution of such jets can lead to some energy transfer to the surrounding gas. However, it is less clear that the outflow-environment coupling is efficient enough to suppress star formation and overcome cooling flows in the time required. |
Apr. 24th | Scott M. Ransom National Radio Astronomy Observatory (NRAO) A Millisecond Pulsar (and Basic Physics) Bonanza with the GBT In the past 5 years, the Green Bank Telescope (GBT) has discovered at least 60 new radio pulsars in globular clusters, effectively doubling the number known. The vast majority of these new systems are millisecond pulsars and about half of them are members of binaries. The rich cluster Terzan 5 alone now contains 33 known millisecond pulsars, by far the most of any globular cluster. Many of the pulsars are truly unique and/or exotic objects that could only have been produced in dense cluster cores after stellar interactions. Some of the stranger systems include the fastest known spinning neutron star (PSR J1748-2446ad at 716 Hz), 9 highly eccentric binary systems, at least 5 eclipsing systems, and 2 millisecond pulsars which seemingly have main-sequence-like stellar companions. Several of these pulsars constrain the equation of state of matter at supra-nuclear densities, while others will eventually provide masses of spun-up neutron stars and interesting tests of gravitational theories. In addition, the pulsars will allow us to probe a wide variety of other astrophysics such as eclipse mechanisms, cluster dynamics, and the structure of the interstellar medium. |